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ABSTRACT 

The purpose of this paper is to optimal control a dual-stage cable robot in a predefined path and to determine the maximum 

load-carrying capacity of this robot as a tower crane. Also, to expand the workspace of the robot two stages are employed. 

Today, cable robots are extensively used in load handling. Positive cable tension and collision-free cable control are the most 

important challenges of this type of robot. The high ratio of transposable loads to weight makes these robots very attractive for 

use as tower cranes. Dynamic Load Carrying Capacity (DLCC) is the maximum load that can be carried along a predefined 

path without violating the actuators and allowable accuracy constraints. State-Dependent Riccati Equation (SDRE) is 

employed to control the end-effector within the path to achieve the maximum DLCC. This approach is chosen since it can 

optimize the required motors' torque which consequently leads us to the maximum DLCC. In addition, the constraint of cables’ 

collision together is also checked along the predetermined path using the non-interference algorithm. The correctness of 

modeling is verified by comparing the results with previous research and the efficiency of the proposed optimal controlling 

strategy toward increasing the DLCC is investigated by conducting some comparative simulations. it is shown that the proposed 

cable robot by the aid of the designed optimal controller can increase the load carrying capacity successfully along any desired 

path using the allowable amount of motors' torque. 

KEYWORDS: Dual-stage cable robot; Dynamic load carrying capacity (DLCC); State-dependent riccati equation (SDRE); 

Optimal control. 

 

1. Introduction 

The use of cable-driven robots is associated with 

advantages such as lower weight, bigger dynamic 

workspace, higher portable load to robot weight 

ratio, easier installation and maintenance, and 

faster performance and movements; Therefore, its 

application has become increasingly popular. The 

controllability-related discussions of cable robots 

have special importance due to the structural 

differences between cable robots and linkage ones 

and also due to the complexity and nonlinearity of 

their dynamic equations. Since the actuators of 

this robot is cable based, the efficient workspace 

of the robot is limited to the movements for which 

the cables’ tension are positive. Also, the same  

as other parallel robots, the accessible dynamic 

workspace for such robots is completely dependent 

on the dimensions and configuration of the 

engaged platforms. The design of the first crane 

using six cables to suspend a pallet was made  

by the National Institute of Standards and 

Technology (NIST) called Robocrane imitating 

the Stewart mechanism. The crane was operated 

manually using a Joy Stick and its purpose was  

to control or eliminate the unwanted oscillations 

of the load during landing and to control the 

destructive effects of the wind. Due to the 

strengths of this structure, cable robots can be 

employed in helicopter or balloon transfer, 

machining and shaping operations, drilling [1]. 

Cable robots are structurally divided into two 

categories: restricted (CRPM) and unrestricted 

(IRPM). Due to the structure and type of cables 

and the possibility of their collision with 

obstacles, CDPM robots are not used for 

transporting and handling the loads and docking, 

instead, robots with IRPM structures are used for 

this purpose. In these robots, the end-effector 

weight and its related load are themselves 

involved in providing the required tension of  

the cables [2]. Agrawal et al. developed the 
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kinematics and dynamics of a cable robot and 
designed a linearized feedback controller for  

a six-degree-of-freedom space cable robot [3]. 

Agrawal team also analyzed the working space 

of this robot. The allowable workspace of the 

robot is a subset of the accessible space for the 

robot in which the traction of the cables is positive 

[4]. Other activities related to this group in this 

field include the study of the dynamics and 

control of docking and load handling by a  

six-degree-of-freedom cable robot connected to  

a helicopter. they proposed two slow and fast 

modes for independent control of the robot and 

the helicopter. In this regard, they were able to 

calculate the inputs of fast and slow-motion 

controllers of the helicopter by solving several 

nonlinear algebraic equations in each time 

interval [5]. Ji et al. studied an eight-DOF 

redundant cable robot and controlled the system 

using the cables’ length feedback and a non-

optimal sliding mode controller. The length of  

the cables is determined by taking feedback from 

the cable length sensors, and the actual position 

of the operator is calculated online using direct 

kinematic equations. Cable tension is assumed to 

be positive and workspace restrictions are not 

considered. Direct kinematic solution methods 

are based on the Tetrahedron approach and the 

Levenberg–Marquardt methods without analyzing 

the robot workspace [6]. Due to the large changes 

in the dynamic parameters of the cable robot and 

to increase the accuracy of tracking, Gouttefarde 

et al. designed and applied an adaptive dual-space 

motion control scheme for CDPR. The proposed 

method aims at increasing the robot tracking 

performances while keeping all the cables tensed 

despite changes in robot dynamic parameters [7]. 

For the 6-cable-driven robot, whose two cables 

are parallel to each other, Gosselin et al. [8], 

analyzed the allowable workspace, accessible 

space, and its related singular points using an 

analytic approach. For the cables to be parallel in 

pairs, both cables must be driven by one motor, so 

this robot needs 3 motors; thereby, this reduces 

the costs and complexity of the work. On the 

contrary, this robot has three degrees and can  

only provide translational movement of the  

end-effector. All these activities are fulfilled  

for single-stage robots while the load-carrying 

capacity of the robot has not been also considered . 

Regarding the determination of the load-carrying 

capacity (DLCC) for cable robots, Korayem  

et al. studied and developed the maximum 

dynamic load-carrying capacity for space cable 

robot (ICaSbot) using the variation method. The 

maximum load-carrying capacity was evaluated 

based on two restrictions including the output 

motors' torque and the maximum allowable  

error. In this study, the controller is an open loop, 

the cables and joints are assumed to be rigid, and 

the traction is assumed to be positive in the cables. 

In the simulation, the results of the maximum 

load-carrying capacity for the optimized 

predetermined path with an open-loop controller 

are presented [9]. Afterward, Korayem et al. 

developed a closed-loop controller for the cable, 

and the DLCC of ICaSbot was extracted for the 

closed-loop system using the same restrictions, 

and the results were compared to open open-loop 

case. Moreover, an algorithm was proposed to 

satisfy the cables' collision restrictions. The 

designed controller is an optimal controller using 

feedback linearization with optimized gains [10]. 

Afterward in [11] the same cable robot was 

promoted to a mobile cable robot by adding two 

actuators to the robot chassis (ICaSbot). Due to 

the non-holonomic structure of the robot, Gibbs-

Appell equations were used to derive the related 

dynamic equations. Considering the internal 

dynamics of the system, linearized input-output 

feedback was used to control the robot. It should 

be noted that this robot also has a single-stage 

platform. 

As mentioned, most previous research is related 

to single-stage space cable robots; Considering 

the superiority of the dual-stage space cable  

robot toward increasing the workspace of load 

transportation, dual stage is studied. There are 

few studies corresponding to dual-stage space 

cable robots in the literature. Contributed to this 

fact that the ability to manage and control the load 

is possible using dual-stage cable robots within 

the larger workspace, makes them the focus of 

attraction. Moreover, proper placement of the 

middle platform can result in a more optimized 

cables' tension distribution, and consequently, the 

extraction of optimal path, or increasing the load-

carrying capacity can be accomplished in a more 

efficient way. Agrawal et al. tested a new dual-

stage cable robot with two moving platforms 

connected in a series of parallel connections [12]. 

The robot is supposed to be employed in ships and 

considering the ocean conditions as a disturbance, 

a robust controller is implemented. Since the main 
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task of controlling the final operator is to move 

the load toward the target, the orientation of  

the middle platform is ignored and the system 

redundancy is added. In [13] kinematics and 

dynamics of this dual-stage robot, considering its 

special linking extracted and robust control  

of (Sliding Mode Control) SMC are designed  

and implemented. However, the optimization  

and determination of the DLCC of this robot  

are ignored in this research. In this article, the  

above-mentioned dual-stage robot is used for the 

generation of new trajectories to avoid the 

obstacle avoidance of the load and provide 

smooth movement. The first platform is 

employed for large movements while the second 

platform provides the accurate adjustment of the 

container. In the linking provided for this robot, 

the two platforms are coupled and all the motors 

are located on the fixed platform. Shafei et al. [14] 

presented a new control strategy for managing 

non-linear systems in the presence of mismatched 

uncertainties. In order to control the system in a 

robust and optimal way, a hybrid control system 

based on disturbance observer was developed, in 

which the optimal control is extracted according 

to State-dependent Riccati Equation approach 

while the robustness is provided based on second-

order sliding mode. 
This paper is dedicated to determine the load-

carrying capacity for a dual-stage cable robot 

while its end-effector is tracking a predefined 

trajectory with the aid of an optimal closed-loop 

controller. Due to the possible changes in the 

transmission load as well as the no-load return, 

the system is exposed to uncertainty. Thus, the 

performance of the controller is investigated and 

the maximum DLCC is also calculated with and 

without this uncertainty. To meet this goal, the 

kinematics and dynamics of the dual-stage robot 

are extracted; Then, the state space equations are 

developed in the quasi-linear form to implement 

the State-Dependent Riccati equation controller 

(SDRE). Finally, the DLCC is calculated in  

the closed loop way according to the proposed 

flowchart and the presented restrictions. It is 

shown that using the suggested dual platform 

together with the presented SDRE optimal 

controller can significantly increase the load-

transferring capability of the cranes. 

2. Kinematic Modeling 

The overall scheme of the proposed dual-stage 

cable robot can be seen in Figure (1). The 

kinematic chain of a dual-stage cable robot is 

shown consisting of three A, B, and the final 

operator C platforms. Platforms B and C are 

connected to platform A by 12 cables. In general 

form, the platform A can be considered as a 

moving chassis.  

 
Fig.1. Dual-stage cable robot 

On platform A, there are 12 motors, 6 of which 

control the movement of platform B directly 

using 6 cables, and the other 6 motors are 

connected to platform C by cables and the pulleys 

located on platform B. The orientation of each 

platform can be extracted using the rotational 

matrices relative to the inertia frame A in the form 

of Equation (1). 

x̅ 
A
B = R 

A
B
 (ψB, θB, φB) ∙ x̅ 

B
B             (1) 

Where R 
A

B
  is rotation matrix of moving platform 

with respect to the base platform using a fixed 

axis rotation sequence of ψ, θ and φ about 

moving platform axes. Unit vectors of roll, pitch, 

and yaw which are defined in local coordinates 

are transferred to the global coordinates. Thus, the 

angular velocity of frames B and C with respect 

to A can be defined in their related frames  

while their global values can be extracted by 

transferring the data to the global coordinates (A) 

using the corresponding rotational matrices.  

The angular velocity of platform B with respect  

to the inertial coordinate A can be obtained in  

A 

C 

B 

qi 

vi 
wi 

𝑂𝐴 

OB 

OC 
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Equation (2). 

ω 
B

BA
 = [

ωb1
ωb2
ωb3

] = [

1 0 −Sθb
0 Cψb SψbCθb
0 −Sψb CψbCθb

] [

ψ̇b
θ̇b
ϕ̇b

] ≜

Pb ∙ Ψ̇b                                  (2) 

where ωbi is the angular velocity of platform B 

around the principal axes in local coordinate. 

Therefore, the angular velocity and acceleration 

of platform C can be obtained relative to the 

inertial reference A. Cable tension vectors are 

defined as the multiplication of the tension values 

of each cable by its related unit vector. Generally, 

the length of the cables Eq. (3) is a function of the 

position and orientation of frames B and C, 

therefore; 
li( X ) =

li( xB, yB, zB, ψB, θB, φB, xC, yC, zC, ψC, θC, φC)     (3) 

Where three translational components and three 

orientational ones of each platform, (X), are 

considered. In this equation, Jacobian is defined 

as Equation (4); 

J = [
∂l

∂X
]                              (4) 

The fixed platform (A) and moving platforms  

(B and C) are shown in Figure (2). In addition,  

the configuration of cables’ connections to the 

platforms is given in Eq. (5). 

{
 
 
 

 
 
 q⃗ 1 = B2A1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 

q⃗ 4 = B4A3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 

v⃗ 1 = C1A1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

v⃗ 4 = C2A3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

w⃗⃗⃗ 1 = C1B3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

w⃗⃗⃗ 4 = C3B5⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

q⃗ 2 = B2A2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 

q⃗ 5 = B6A3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 

v⃗ 2 = C1A2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

v⃗ 5 = C3A3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

w⃗⃗⃗ 2 = C2B3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

w⃗⃗⃗ 5 = C3B1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

q⃗ 3 = B4A2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 

q⃗ 6 = B6A1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 

v⃗ 3 = C2A2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

v⃗ 6 = C3A1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

w⃗⃗⃗ 3 = C2B5⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

w⃗⃗⃗ 6 = C1B1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

     (5) 

 
Fig.2. The configuration of the cables’ connections 

to the platforms 

According to Figure (3), the length of the cables 

can be obtained according to the rules of the 

vector. The qi cables connect the intermediate 

platform to the fixed one, the vi cables connect 

the end effector to the fixed platform, and the wi 
cables connect the end effector to the intermediate 

platform. 

   
Fig.3. a) Cables q b) Cable v and w 

where X is the position vector of the center of  

the platforms relative to platform A. Vectors b and 

c are the vectors of connection points to the 

platforms with respect to the local coordinates. 

Since the cables v and w are connected by pulleys 

and their total length is controlled by a motor, they 

are essentially considered as one cable, so; 

li(X) = {
qi( X ) i = 1: 6

vi−6( X ) +  wi−6( X )   i = 7: 12
      (6) 

3. Dynamic Formulation 

The dynamic equations of the dual-stage cable 

robot are obtained for moving chassis using 

Newton-Euler method [13]. 

M(X)Ẍ + F(X, Ẋ) + D(X) = J(X)T 

M(X) = [
Mb O3
O3 Mb

]  ,       F(X, Ẋ) = [
Fb
Fc
]  

D(X) =  [
Db
Dc
]  ,                  J(X) = [

Jb
Jc
]          (7) 

where M is the matrix of inertia, F is the Coriolis 

and Centrifugal force vector and D is the gravity 

vector. Considering the chassis as a fixed plate, 

the dynamic equations for each frame B and C are 

in the form of Equations (8) and (9). 

[
mbI3 O3
O3 R 

A
BIbPb

] [
ẍb
Ψ̈b
] + [

O3×1
FO,b

] + [
−mbg⃗ 
O3×1

] =

 [
q⃗ 1/q1 . . . −w⃗⃗⃗ 6/w6

rb1 
A × q⃗ 1/q1 . . . − rb12 

A × w⃗⃗⃗ 6/w6
] T        (8) 

[
mcI3 O3
O3 R 

A
CIcPc

] [
ẍc
Ψ̈c
] + [

O3×1
FO,c

] + [
−mcg⃗ 
O3×1

] =

 [
v⃗ 1/v1       . . . w⃗⃗⃗ 6/w6

rc1 
A × v⃗ 1/v1       . . . rc12 

A × w⃗⃗⃗ 6/w6
] T       (9) 

Where; 

FO.b = R 
A

B
 Ib Ṗb Ψ̇b + R 

A
B
  Pb Ψ̇b × R 

A
B
 Ib Pb Ψ̇b (10) 

Due to the fact that changes in spatial components 

𝐴1 
 

𝐶1 
 

𝐶3 
 𝐵1 

 𝐵5 

 

𝐵2 
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do not affect the Coriolis and Centrifugal forces, 

the vector of these forces, which is only affected 

by changes in angular components, is called FO,b 

and FO,c. also mb and mc are masses of the 

engaged platforms, and Ib and Ic are their related 

rotational inertia. The vector of the motors’ torque 

Eq. (11) can be obtained by adding the motor 

dynamics to platform one as follows: 

τ = r. J(X)
−1
(M(X) Ẍ + F(X, Ẋ) + D(X)) +

j. (
d

dt
(
∂β

∂X
) Ẋ +

∂β

∂X
Ẍ) + c. (

∂β

∂X
Ẋ)             (11) 

where j, c, and r are the rotational moment inertia 

of the rotor and pulleys, the damping coefficient 

of the electromotor, and the radius of the pulleys, 

respectively. These parameters are selected 

equally for all motors simplifying the calculations 

without reducing the overall work. In this 

equation, the vector β is related to the rotation 

angle of the motors.  

4. SDRE Controller and Quasi-Linear 

Equation 

The state-dependent Riccati Equation is one of 

the most powerful optimization tools since it can 

optimally control the dynamics of a system in a 

nonlinear and closed-loop way. In this method, 

nonlinear dynamic equations are rewritten in a 

quasi-linear structure, so that the use of optimal 

linear control methods could be possible. After 

solving the Hamilton-Jacobi-Bellmann equation, 

the state matrix appearing in the Riccati equation 

will no longer be constant and will be considered 

as a function of the system state variables and  

this is the only existing difference. The optimal 

feedback gain is obtained and the stability and 

optimality of the response can be achieved 

simultaneously by solving this Riccati algebraic 

equation at any moment. It can be stated that the 

SDRE is a kind of DI for which the feedforward 

terms are added and the feedback gains are tuned 

automatically using the defined cost function. It is 

worth mentioning that in nonlinear conditions, 

there is nonlinearity in the controller input.  

The problem with this type of nonlinearity is  

the complexity of the numerical calculations  

which needs to be solved in the SDRE controller.  

Thus, in most proposed methods, the system is 

optimized in offline mode. In such systems, the 

states are nonlinear. If the linear relationship 

between the input vector and the system states is 

established, the system equation can be written as 

Equation (12) [16];  

ẋ = f(x) + B(x)u                      (12) 

Considering the combined dynamic equations  

of the robot and the actuators (Eq. (11)), the 

controllers must be quasi-linear to use these 

equations in the SDRE controller [17]. By 

rewriting this formula in terms of the first and 

second derivatives of the variables, Equation (13) 

is obtained.  

[M + J 
j

r
 (
∂β

∂X
)] Ẍ +  [ J 

j

r
  
d

dt
(
∂β

∂X
) +

 J 
c

r
 (
∂β

∂X
)] Ẋ  + F + D =

1

r
Jτ              (13) 

Or simply,  

M̃ Ẍ +  Ñ Ẋ  + F + D =
1

r
 Jτ              (14) 

Now, the 12 second-order differential equations 

are converted to 24 first-order equations. The 

arrangement of the state vectors is chosen as 

Equation (15); 
Z(t) = {xB(t),  yB(t), . . ., xC(t),  yC(t), . . ., ẋB(t),

ẏB(t), . . . ,  ẋC(t),  ẏC(t), . . . }                (15) 

or, 
q(t) =

{q1(t), q2(t), . . . , q12(t), q̇1(t), q̇2(t), . . . , , q̇12(t)} (16) 

Then, the state equations can be obtained as 

Equation (17). 

{
q̇i(t) = qi+12(t)

q̇i+12(t) = M̃
−1( −Ñ qi+12(t) − F − D) + M̃

−1(
1

r
J)τ

 I=1:12                              (17) 

Equation (17) should be written in quasi-linear 

form Equation (18) to be applicable in SDRE 

controller, 

Ẋ(t) = A(X)X(t) + B(X)u(t)             (18) 

The goal is to reach a stabilizing control u while 

minimizing the cost function J of Eq. (19); 

J(x0, u(0)) =
1

2
x(T)TP(T)x(T) +

1

2
∫ {xT(t)Q(x)x(t) + uT(t)R(x)u(t)}dt
T

0
        

𝑄(x) ≥ 0, R(x) ≥ 0, P(T) ≥ 0            (19) 

where Q(x) is the gain matrix of accuracy and 

R(x) is the gain matrix of control input. The state 

weighting matrices and the input are assumed  

to be a function of the state variable. This is  

another advantage of SDRE controllers weighting 

matrices can be designed to increase Q(x) and 

decrease R(x) by increasing the state variable. 

This type of design results in maintaining a 

control effort near a predetermined path. The 

control rule can be obtained then as a closed loop 

formula of Equation (20) for which the cost 

function is approximately minimum. 
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u(X) = −K(X)X(t) = −R−1(X)BT(X)P(X)X(t)  (20) 

Here P(x) should be extracted using the following 

state-dependent Eq. (21). 

P(X)A(X) + AT(X)P(X) −

P(X)B(X)R−1(X)BT(X)P(X) + Q(X) = 0  (21) 

P(x) is a symmetric and positive definite matrix. 

Finally, the quasi-linear matrix A is obtained as 

Equation (22) if the equation would be written as 

a matrix and quasi-linear form. 

A = [
O12×12 I12×12
D̃12×12 F̃12×12 − M̃

−1. Ñ
]            (22) 

Where; 

F̃ = [

O3×3 O3×3
O3×3 FB

O3×3 O3×3
O3×3 O3×3

O3×3 O3×3
O3×3 O3×3

O3×3 O3×3
O3×3 FC

]            (23) 

and, 

D̃ =

[
 
 
 
 
 
 
0 0
0 0
0 0

0
0

−mbg/zB

⋯
0
0
0

⋮ ⋱ ⋮
0  0
0   0
0  0

     0
     0
     0

⋯
0
0
0]
 
 
 
 
 
 

             (24) 

The quasi-linear input matrix can be selected as 

Equation (26). 

B(X) = [
O12×12
B̃(X)

]                       (25) 

B̃(X) = [M − J 
j

r
 (
∂β

∂X
)]
−1

. (
 J

r
)           (26) 

The algorithm of the proposed controlling 

strategy is shown in Figure (4). 

5. Load Carrying Capacity 

Determining the load-carrying capacity is 

essential when the system is tracking a predefined 

path. The main constraints of the robot dynamics 

include positive tension of the cables and cables’ 

interference avoidance. Thus, the load replacement 

should be conducted within a predefined path  

for which the mentioned constraints could be 

satisfied. To do so, the maximum motor torque 

and the maximum allowable deviation of the 

actuators from their related path should be 

considered. Therefore, coefficients for evaluating 

and modeling the motor torque restrictions and 

their accuracy need to be calculated. In [15] two 

groups of dimensionless coefficients are defined 

as torque coefficients (Ca) and accuracy coefficient 

(CP), according to the robot dynamics, the 

motor’s torque and allowable errors of the end 

effector along the predefined path. 
Ca = min { 

τai

max{[r J−1(M̃ Ẍ+  Ñ Ẋ +F+D)]
i
}−max{τni}

 }, = 1. .12}           

 I= 1.12                              (27) 

the τai is the maximum allowable torque to 

increase for each motor at any point in the path. 

𝜏𝑛𝑖 is the calculated torque for free-load motors, 

and only the weight of the final operator and  

the middle platform are considered in these 

calculations. 

CP =
ew

ea
=

ew

‖Xa(t)−Xd(t)‖
                  (28) 

where Xa(t) and Xd(t) show the actual and 

desired position of the final operator and ew is  

the controller fault, respectively. The iterative 

method like the flowchart presented in Figure 5, 

was presented to find the DLCC of a robot based 

on torque and error constraints. According to  

the definition, the maximum value of these 

coefficients is 1 and occurs if one of the motors is 

saturated at one of the points or the position of the 

operator in the unauthorized area is off regarding 

the path. 

6. Dual-Stage Cable Robot Validation 

To verify the correctness of the modeling, the 

performance of the robot through the simulation 

is compared with the performance of the ICaSbot 

single-stage cable space robot (Fig. 6). 

 
Fig.4. Real-time SDRE controller flowchart 
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Fig.5. Flowchart for calculating the dynamic load-carrying capacity for a given trajectory 

To make the compatibility of the presented dual-

stage cable robot with the mentioned single stage  

one [14], the middle platform is attached to the  

end-effector of the robot at a negligible distance. 

Zero distance is not possible since the Jacobian 

matrix will be singular. In other words, if the 

distance between the intermediate platform and 

the end-effector tends to zero, then one can 

conclude that the presented dual stage cable robot 

tends to single-stage one. Moreover, the shape 

and dimensions of this platform are considered 

roughly the same size as the dimensions of the 

end-effector. In this case, the mobility of both 

platforms can be defined by a unique function, 

and its mass and moment of inertia are neglected 

compared to the end-effector's. 

 

Fig.6. Space cable robot (ICaSbot) 

The end-effector weight is 1.09 kg and the load is 

0.5 kg. The predetermined path is also a circular 

path at a distance of 45 cm below the fixed 

platform. The performance of both types of robots 

against 50% uncertainty is shown in Figure (7).  

In this simulation, in addition to validating the 

modeling, the performance of the SDRE controller 

can be observed in comparison with the optimal 

LQR controller [15]. The similar response of the 

open-loop diagrams shown in parts a and b of 

Figure (7) shows the correctness of the two-stage 

spatial cable robot modeling. On the other  

hand, it can be seen that the SDRE controller 

performance (part b) has a significantly better 

response compared to the optimal LQR controller. 

To compare the torques, a payload of 3.4 kg 

(Compared with 0.5 kg in [15]) was chosen. As 

can be seen form Figure 8, the trends of the curves 

are generally similar. Differences are contributed 

to the fact that additional actuating cables are 

engaged. Also, due to the difference between  

the two controllers (LQR for single stage vs.  

SDRE for dual), the response speed is a little bit 

different. 
Considering the fact that the main superiority  

of dual cable robots is their larger rotational 

movement, another simulation scenario is 

considered here in which the platforms have also 

rotational movement. The path and changes of the 

cables’ length for the movements of Equations 

(30, 31) is studied here. 

t < 10 s 
               
→    

{
 
 
 

 
 
 xC = 0.05 cos (

πt2

100
)

yC =  0.05 sin (
πt2

100
)

zC = −0.45               

ψC = 0.03 sin (
πt

2
)   

θC = 0                         
φC = 0                        

           (29) 
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10 s < t < 20 s 
         
→  

{
 
 
 

 
 
 xC = 0.05 cos (

π(t−20)2

100
)    

yC = −0.05 sin (
π(t−20)2

100
)

zC = −0.45                          

ψC = 0.03 sin (
πt

2
)              

θC = 0                                    
φC = 0                                   

   (30) 

To study the effect of rotational movement of the 

platforms on the kinematics and kinetics of the 

robot, the comparison of the robot DOFs for 

circular movement between fixed platforms’ 

angle and variable angle modes (Figure (9a, 9b)), 

comparison of cables’ length (Figure (9c, 9d)) and 

comparison of motors’ torque (Figure (9e, 9f)) are 

shown. It can be seen that both the kinematic and 

kinetic profiles have a little increase in amplitude 

with higher distortion compared to fixed mode 

which is the result of the harmonic movement of 

the platform pitch. Therefore, the trajectory will 

have a significant impact on determining the 

DLCC. 

7. Simulation  

In the simulation performed for a dual-stage cable 

robot with six degrees of freedom and six degrees 

of cable redundancy, the following dimensional 

specifications have been considered: 

  
(a) (b) 

Fig.7. Comparison of the path traveled by the system equipped with the controller and the open loop 

system in both (a) single-stage (b) and dual-stage robot 

 

Fig.8. Comparison of the motors torque profiles for dual-stage cable robot and single-stage cable robot 
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Fig.9. Comparison of the DOFs, motor’s torque, and length of the cables connected to the end-effector in 

circular motion with fixed and variable pitch angle 

Tab.1. Characteristics of the spatial dual cable robot 

Title Symbol Ratio Unit 

Moment of inertia of the end-effector IC ICxx = ICyy = 0.0018 , ICzz = 0.0036 kg.m2 

Moment of inertia of the middle platform IB IBxx = IByy = 0.0002 , IBzz = 0.0004 kg.m2 

Mass of the end-effector mC 1.09 kg 
Middle platform weight mB 0.1 kg 

Size and dimensions of the fixed platform* rA 0.68 m 

Size and dimensions of the middle platform* rB 0.05 m 

Size and dimensions of the end-effector* rC 0.098 m 

The pulley radius of the motor r 0.015 m 

The damping coefficient of the motor c 0.01 N.m/rad 

Rotational inertia of the motor j 0.0008 kg.m2 

Error gain matrix Q diag(100) − 

Input gain matrix R diag(0.1) − 

Stall torque of the motors τs 300 N.mm 

The free running speed of the motors ω0 286.5 RPM 

• The radius of the circumference circle on the platform panel 

In this part, to determine the load-carrying 

capacity of the dual robot and also to increase the 

load-carrying capacity through the proportional 

distribution of the cable tension, the following 

simulation is performed.  

In all cases, the predefined path for the  

end-effecter is a circular path with zero initial 

velocity which increases linearly. Then, in the 

middle of the path with a constant negative 

acceleration, the speed decreases to zero. Initially, 

the middle platform is located at a height of  

20 cm lower than the fixed platform and remains 

fixed during the end-effector's path. It should be 

noted that in this simulation the middle platform 

is fixed.  

Figure 10 shows the torque saturation diagram  

of the actuators for two types of single and  

two-stage robots. In a single-stage robot with a  

DLCC of 4.5 kg, the motors have reached the 

saturation state [14], while in a two-stage robot, 

the related maximum DLCC is 10.5 kg, which  

is more than double. In both types, the load factor 

is saturated and the accuracy factor remains 

within the specified allowable range   1 ± mm   

(Fig. 11). 

To check the performance of the dual robot  

SDRE controller, all DLCC can be considered as 

uncertainty, which may occur in practice. 
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Fig.10. Comparison of motors torque saturation profiles for dual-stage cable robot and single-stage cable 

robot 

 
Fig.11. Comparison of the error along the x and y 

axes for the dual and single-stage cable robot 

In Figure 12, for the applied load uncertainty, the 

accuracy factor is not saturated and the error 

remains within the allowed range for the closed-

loop system, while for the open-loop system with 

0.3 kg of uncertainty payload, the accuracy factor 

is saturated. This robustness shows the efficiency 

of the proposed closed-loop nonlinear controller 

for this dual-stage cable robot.  

Another advantage of the proposed dual-stage 

cable robot is its over-actuated entity which 

enables us to choose different paths for a unique 

destination toward increasing the DLCC. The 

payload of the end-effector can be increased by 

moving the intermediate platform, in proportion 

to the end-effector, since the cable’s tensions  

can be distributed in a more optimized way. In  

Figure 13, by considering a circular motion for 

the intermediate platform synchronous with the 

end-effector, 12.4 kg payload can be carried  

by which the torque is saturated and cable 

interference constraint is also satisfied. However, 

this amount of load does not indicate the DLCC 

since the accuracy constraint must be also 

controlled. 

 
Fig.12. Comparison of the error along the x and y 

axes for the open-loop and the optimal closed-loop 

SDRE controller 

By checking the accuracy conditions, it is clear 

that the payload is violated and therefore the 

payload should be reduced. 
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Fig.13. Motors torque saturation profiles with 12.4 kg payload 

By performing the mentioned iteration algorithm, 

to meet the accuracy condition (Fig. 14), the 

amount of carrying capacity for this condition will 

be 11.8 kg. 

It can also be seen that by changing the path of the 

middle platform, the cables’ tension changes are 

reduced which eventually leads the system to 

have a higher DLCC. In this way, by adjusting  

the position of the middle platform, the tension of  

the cable can be controlled and its tension can be 

prevented from becoming zero, which in turn 

expands the workspace of the robot. 

 
Fig.14. Error along the x and y axes with 11.8 kg 

DLCC 

8. Conclusion 

In this paper, the dynamic load-carrying capacity 

for a dual-stage space cable robot is obtained 

based on an iterative algorithm and employing  

an optimal SDRE approach. The constraints used 

to determine the DLCC in this algorithm were 

accuracy and motor torque. The kinematics and 

dynamics of the robot were derived with six 

degrees of cable redundancy. SDRE controller 

was used to increase the accuracy of the robot  

for load transfer in the predetermined path. In 

addition, load uncertainty was used to show the 

efficiency of the controller. It was seen that the 

controller can handle the end-effector in both  

of translational and rotational movement in  

the presence of 900% uncertainty on the load 

parameter. It was seen that the maximum  

DLCC of the dual-stage cable robot with SDRE 

controller is 10.5 kg, thanks to double number  

of the engaged motors which is 16.7% higher  

than the single stage robot. It was also shown  

that by moving the middle platform, in addition  

to controlling the tension of the cables and 

preventing them from becoming zero, the load 

carrying capacity can be increased. Thus, it can  

be concluded that the presented robot with  

the designed controller can be used for object 

handling of heavy load for large workspace 

conditions. 
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